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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 4-27-59A

LIFT-DRAG RATIOS FOR AN ARROW WING WITH BODIES

AT MACH NUMBER 3*

By Leland H. Jorgensen

SUMMARY

Force and moment characteristics, including lift-drag ratios, have

been measured for bodies of circular and elliptic cross section alone and

combined with a warped arrow wing. The test Mach number was 2.94, and

the Reynolds number was 3.5×106 (based on wing mean aerodynamic chord).

The experimental results show that for equal volume the use of an ellip-

tical body can result in a noticeably higher maximum lift-drag ratio than

that obtained through use of a circular body.

Methods for estimating the aerodynamic characteristics have been

assessed by comparing computed with experimental results. Because of

good agreement of the predictions with experiment, maximum lift-drag

ratios have been computed for the arrow wing in combination with bodies

of various sizes. These calculations have shown that, for an efficient

wing-body combination, little loss in maximum lift-drag ratio results

from considerable extension of afterbody length. For example, for a

wing-body configuration having a maximum lift-drag ratio of about 7.1,

a loss in maximum lift-drag ratio of less than 0.2 results from a

40-percent increase in body volume by extension of afterbody length.

It also appears that with body length fixed, maximum lift-drag ratio

decreases almost linearly with increase in body diameter. For a wing-

body combination employing a body of circular cross section, a decrease

in maximum lift-drag ratio from about 9.1 for zero body diameter to about

4.6 for a body diameter of 13.5 percent of the body length was computed.

INTRODUCTION

It is well known that the range of an aircraft in relatively steady

level flight depends on the ratio of lift to drag. From the range equation

it is also known that the range is proportional to the thermopropulsive

*Title_ Unclassified
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efficiency and the logarithm of the ratio of initial to final weight.
0bviouslyj someunorthodox aircraft designs based entirely upon consid-
erations for achieving a high lift-drag ratio maynot be practical at
the present time because of weight and structural limitations. Neverthe-
lessj the aerodynamicist has the obligatiorJ to point out the directions
in which to proceed for greater aerodynamic efficiency. In reference 1
by Brown and McLeanand in reference 2 by B. T. Jones sometheoretical
possibilities for obtaining high lift-drag ratios are reviewed. From
these studies it is evident that arrow or sweptback wings offer con-
siderable hope for obtaining high lift-drag ratios at supersonic speeds.
Katzenj in reference 3, also reaches this conclusion in studying the
lift-drag ratios that are theoretically possible to achieve with delta
and arrow wings at Machnumber3. In tests reported in reference 3 of
an arrow wing designed for high lift-drag ratio at Machnumber 33 an
experimental trimmed lift-drag ratio of about 9 was obtained. This value_
although lower than the estimated result of about ll.5j is probably the
highest measured for a model at Machnumber 3 with an essentially turbu-
lent boundary layer.

Of considerable interest_ of course_ is the effect on lift-drag ratio
of adding body volume to an efficient wing. In the present investigation
such a study has been undertaken. The arro_ wing of reference 3 has been
tested in combination with both a body of circular cross section and a
body of elliptic cross section. In additio_ measuredvalues of lift and
drag coefficient for the wing alone have been used to computelift-drag
ratios for the wing in combination with bodies of various sizes. The
purpose of this report is twofold: first 3 to assess the adequacy of a
proposed method for computing the aerodynamLccharacteristics of an arrow
wing-body combination by comparing computedwith experimental results
and_ second_ to show the predicted magnitudes of the maximumlift-drag
ratios resulting from the addition of variols amounts of body volume to
an efficient arrow wing.

NOTATION

Ap

AW

a

b

body base area

body plan-form area

exposed wing plan-form area

semimajor axis of elliptic cross se_tion

semiminor axis of elliptic cross sec_tion

section drag coefficient of circula:" cylinder 3 based on cylinder
diameter
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D
drag coefficient,

drag coefficient at zero lift

L

lift coefficient, qA'--"_

pitching-moment coefficient at specified length position Xm,

pitching moment

%Aw 

wing root chord

wing mean aerodynamic chord

drag (exclusive of body base drag)

body base diameter, 2_ for an elliptic body

ratio of lift component to lift of wing alone

lift

body length

distance to center of pressure measured from intersection of wing

leading edge and body

body nose length

free-stream Mach number

body volume

free-stream dynamic pressure

Reynolds number based on wing mean aerodynamic chord

local body radius

Cartesian coordinates with origin at body nose vertex, x axis

coincident with body longitudinal axis_ and z axis perpen-

dicular to x axis in pitch plane

distance from nose vertex to center-of-pressure position
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XZe

Xm

xo

<L

E

distance from nose vertex to centroid of body plan-form area

distance from wing apex to wing leading edge (see fig. i)

distance from nose vertex to pitching-moment reference center

wing ordinate measuredalong chord from wing leading edge
(see fig. i)

angle of attack

sem2apex angle of wing leading edg_

angle of bank about body longitudi_al axis

Subscripts

B

e

i

L

max

U

W

W(B)

body

body in presence of wing

elliptic cross section

interference

lower surface of wing

maximum

upper surface of wing

wing

wing in presence of body

APPARATUS AND TE_TS

Wind Tunnel

The experimental investigation was corducted in the Ames I- by 3-foot

supersonic wind tunnel No. 2. This tunnel is a nonreturn_ intermittent-

operation type and is equipped with a flexible-plate nozzle that provides
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a variation of Mach number from 1.4 to 3.8. Air for this tunnel is

obtained from the Ames 12-foot pressure wind tunnel at a pressure of

about 5 atmospheres and is expanded through the nozzle to the atmosphere.

Changes in Reynolds number are obtained by varying the total pressure.

The water content of the air is maintained at less than 0.0003 pound of

water per pound of dry air. Consequently, the effect of humidity on the

flow is negligible.

Models

Plan-form views of the models tested are shown in figure I. The

arrow wing (W) of figure l(a) is model 6 of reference 3. This wing was

designed for _ tan e = 0.5 at M_ = 3 and was cambered and twisted for

low drag due to lift. Previous to being twisted 3 the wing section

normal to the leading edge was the Clark Y, 12 percent thick. Several

of the wing sections for the twisted wing are shown in the lower half

of figure l(a). It is seen that the wing tips are bent upward, the bend

starting at the trailing edge of the root section. Ordinates for the

bent wing are tabulated in table I. Because it gave the highest trimmed

lift-drag ratio (about 9) of any of the arrow wings previously tested

(ref. 3) at Mach number 33 this wing was chosen for additional tests with

the bodies shown in figures l(b) and l(c). Body BI, shown in figure l(b)

with wing W, had a circular cross section and consisted of a nose of

fineness ratio 6 [r = (d/2)(X/ZN) s/4] with a cylindrical afterbody i0 diam-

eters long. Body B2, shown in figure l(c) with wing W, had an elliptic

cross section (a/b = 2), and the axial distribution of cross-sectional

area was the same as for body B I. Hence, the fineness ratio of Z/d = 16

for BI was also the equivalent fineness ratio for B2.

The wing (W) and the bodies (Bl and B2) were interchangeable and

could be tested alone or in combination. The wing was positioned on the

bodies so that the bottom surface at the root chord was essentially at

the midbody position z = 0, and the entire cambered top surface was

above the midbody position. Actually the z wing ordinates in table I

are taken with respect to the body z axis and, hence, give the position

of the wing with respect to the bodies. All of the models were con-

structed of steel and were supported from the rear on a strain-gage

balance.

Tests

Force tests.- Balance measurements of lift, drag, and pitching moment

were obtained for bodies B I and B2 alone and combined with wing W

(models BIW and B2W ) at a free-stream Mach number of 2.94. The Reynolds
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number, based on wing mean aero_amic chord, was 3.5x10 _. The angle-
of-attack range was from about 0 to 13 ° for bodies Bl and B2. For

models BIW and B2W the angle-of-attack razlge was from about -6.5 °

to +6.5 ° . The arrow wing W has been pre_.!.ously tested alone at the

same Mach number and Reynolds number and for angles of attack from

-6.5 ° to +6.5 ° (ref. 3)- For the bodies an_[ wing-body combinations,

base pressures from eight orifices spaced around the inside of the base

periphery of each model were measured from photographic recordings of

a multiple-tube manometer board.

Visual-flow tests.- The sublimation technique (ref. 4) was used for

determining the position of boundary-layer transition on the models. The

models, which were initially painted black, were sprayed with a saturated
solution of tetrachlorobenzene in benzene. This solution dries on contact

with the model surface and presents a white appearance. As the wind

tunnel is operated, the process of sublimat'on takes place with turbulent

boundary-layer regions showing up as dark areas on the model and laminar

regions remaining white. (Other solutions, such as biphenyl, acenaphthene,

or azobenzene dissolved in petroleum ether, can be used to produce

progressively slower rates of sublimation for tests in longer running

wind tunnels of the closed-circuit continuous-operation type. )

In addition to the sublimation techniq1_e, flow patterns were visual-

ized through use of the white-lead (liquid J'ilm) method (ref. 5). In this

technique the models are painted with a mixlure of white lead and light

lubricating oil (S.A.E. i0) and are run wet in the _ind tunnel. Flow

directions and regions of separation become discernible on the surface.

REDUCTION AND ACCURACY (F DATA

All of the force and moment data have _een reduced to coefficient

form. The average base pressure from the e_ght base orifices was used

to compute the base drag which was subtracted from the total axial-force

balance measurement, so that the data preserted are for forces ahead of

the body base. Actually there was little d_fference in the base pressures

from the eight base orifices, and fewer orifices could have been used.

The accuracy of the final data is affected by uncertainties in the

measurement of the forces and moments, and _n the determination of the

stream static and dynamic pressures used in reducing the forces and

moments to coefficient form. These individual uncertainties led to

estimated uncertainties which are listed below.

CL ±0.002 L/D ±0.i

CD ±.0002 _/Z ±.02

Cm ±.002
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The values of angle of attack are estimated to be accurate to within

±0.i °. The variation of the free-stream Mach number in the region of the

test models was less than ±0.02 at Mach number 2.94.

RESULTS AND DISCUSSION

Experimental Results

Experimental results of lift, drag, lift-drag ratio, pitching moment,

and center of pressure are plotted in figure 2 for all of the models tested.

Sketches of the models in plan-form view are used to identify the curves,

a practice followed throughout the report. It is seen in figure 2(a)

that the elliptic body B2 develops about twice the lift of the circular

body BI. As a result, the lift coefficients based on the exposed wing

area are also higher for the wing-body combination employing the elliptic

body (B2W) than for the combination with the circular body (BIW) . The

wing-body combination having the elliptic body (BeW) also develops higher

lift-drag ratios, (L/D)max being about 7.2 for BeW as compared to 6.7

for BIW (see fig. 2(c)). For the pitching-moment results presented in

figure 2(d), the moment reference positions, Xm, are chosen so that the

wing and wing-body combinations are trimmed at the lift coefficients

for (L/D)max. The wing-body combinations were found to be longitudinally

stable about these positions. The moment data for the bodies alone are

referred to the same positions as for the corresponding wing-body

combinations. As shown in figure 2(e), the center-of-pressure positions

are slightly more forward for the models with elliptic bodies than for

the corresponding models with circular bodies. As a result, the moment

reference position for B2W (at xm = 0.690 Z) is slightly forward of that

for BIW (at Xm = 0.715 Z).

From sublimation tests it was observed that the boundary-layer flow

over the models was mostly turbulent. In figure 3 photographs are shown

of patterns resulting from a sublimation test of model B2W at _ = 0°.

It can be seen that laminar flow regions, which are white, are found only

near the body vertex and the wing leading edges. With increase in angle

of attack to about 6.5 ° (the highest of this investigation for B2W), the

small length of laminar run on the model appeared to diminish. (Note that

in the photographs presented in this report a small amount of wing near

the tips is removed. It was found, however, that this loss of tip had

negligible effect on the flow patterns obtained by both the sublimation

and white-lead techniques.)



In figure 4 photographs are shownof secondary flow patterns result-
ing from white-lead tests of model B2Wat c_= 0° and a = 4.5° . At

= 0° (fig. 4(a)) the patterns indicate that the flow was attached over
the top surface of the model. Over the bottom, however, there is evidence

of some flow separation from the wing rearward of the position at which

the bending up of the wing was started. At a = 4,_ °, the angle for

(L/D)max , the patterns in figure 4(b) indicate that the flow was attached

over the bottom surface, but on the top there was some separation near

the wing leading edges (as indicated by the ridge lines near and parallel

to the leading edges).

Comparisons of Predicted and Experimental Results

Predicted and experimental aerodynamic characteristics for the bodies

and wing-body combinations tested are compared in figures 5 and 6. The

circular body B l and wing-body combination BIW are considered in

figure 5, and the elliptic body B2 and wing-body combination BeW are

considered in figure 6. The experimental wing alone results are presented

in both figures for reference, since they were used in computing the

aerodynamic characteristics of the wing-body combinations. In general,

the computed curves, which were determined by the methods outlined in

the appendix, are in good agreement with th_ experimental results. It

should be noted, however, that the predicti.m of lift coefficient as a

function of angle of attack is slightly erroneous (figs. 5(a) and 6(a)).

Yhis disagreement probably results from omi_sion in the calculation of

the interference lift caused by placement of the wing above the midbody

z = 0 location. With the cambered upper surface of the wing entirely

above the midbody location (the bottom surface near the root chord being

essentially at z = 0), a positive pressure field was probably created

over part of the body top, resulting in some negative interference lift.

The magnitude of the interference lift coefficient at _ = 0° can be seen

in figures _(a) and 6(a). Here the negativ_ lift coefficient at _ = 0°

can be attributed mostly to interference, sLnce the body-alone lift

coefficient is zero, and the wing-alone lif_ coefficient is practically

zero.

The agreement of the computed with the experimental center-of-pressure

positions in figures 5(e) and 6(e) is surprLsingly good considering the

assumptions in the theoretical methods. For the wing-body combinations

the computed center-of-pressure positions are generally slightly forward

of the experimental positions. As a result, the computed and experimental

pitching-moment coefficients are somewhat ia disagreement (see figs. 5(d)

and 6(d) ).
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Effect of Body Size on Maximum Lift-Drag Ratio

Because of the satisfactory agreement of calculated with experimental

values of (L/D)max for the models tested, additional calc_ations of

(L/D)max have been made for wing-body combinations employing bodies of

various sizes. The body size was mainly varied by changing the body

diameter with the length fixed. However, with the body diameter kept

constant at the value for the test model BIW (d = 0.936 inch or 0.062 Z),

the effect on (L/D)max of extending the afterbody length to the wing tips

was computed. This extension of afterbody length increased the total

body length from about 16 to 21 diameters, and the body volume increased

about 40 percent. With this large increase in body length and volume,

however, the computed loss in (L/D)max was less than 0.2. A similar

result is reported in reference 6 for flat-top arrow-wing configurations

with half cones mounted below thin wings. Here it is shown from experi-

ment that a 40-percent increase in body volume, by increase in afterbody

length, results in practically no loss in measured lift-drag ratio.

With the body length kept constant at the same value as for the test

models BIW and B2W , the variation of (L/D)max with change in body diam-

eter was computed for values of d from 0 to 0.135 Z. The computed

results are presented in figure 7. Experimental values of (L/D)max for

the wing W alone and for the wing-body combinations, BIW and B2W , are

also shown for comparison. It is seen that, for wing-body combinations

employing bodies of circular cross section, there is a steady decrease in

(L/D)max from about 9.1 for d = 0 to about 4.6 for d = 0.135 Z. Loss in

(L/D)max with increase in d/Z is apparently diminished somewhat through

use of a body of elliptic cross section.

In figure 8 the results of figure 7 are replotted _th the abscissa

changed to (body volume) 213 Here the calculation shows that for large
total plan area

equal values of this parameter the configurations with the circular bodies

should be slightly more efficient than the ones with the elliptic bodies.

This, of course, is because of the fact that wing area is more efficient

than body area, and a greater percentage of the total plan area is wing

area for the configurations with the circular bodies than for those with

elliptic bodies. Also plotted in figure 8 is the value of (L/D)max of

7.4 reported in reference 3 for the arrow wing in combination with a

circular body of smaller diameter (0.75 inch) than the one used for the

tests of this investigation. As shown in figure 8, the agreement of the

computed with the experimental results is good.

If it is assumed that wing volume is essentially useful volume,

(L/D)max can be plotted as a function of the total vol_ne parameter,

(total volume) 213
The computed and experimental values of (L/D)max

total plan area
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are plotted as a function of this parameter in figure 9. It is seen that
there is a rapid decrease in (L/D)max resu]ting from addition of body
volume to wing volume. This illustrates thc_great loss in aerodynamic
efficiency which results from the use of bo_ies for increasing volume
capacity. The indication is, of course, thet for greatest aerodynamic
efficiency, volume should be designed into the wing.

CONCLUSIONS

An efficient arrow wing combinedwith bodies of circular and elliptic
cross section has been tested at Machnumbe_2.94. The Reynolds number,
based on wing meanaerodynamic chord, was 3.5×106• Bodies of circular
and elliptic cross section also have been tested alone at the samecondi-
tions. Computedvalues of lift, drag, lift-drag ratio, pitching moment,
and center of pressure have been comparedwith measuredvalues. An
analysis of the results has led to the following conclusions:

i. The experimental results show that for equal volume the use of
an elliptical body can result in a noticeably higher maximumlift-drag
ratio than that obtained through use of a circular body.

2. The aerodynamic characteristics for bodies of circular and
elliptic cross section and for arrow wing anl body combinations can be
computedreasonably well by the methods outlLned in the report.

3. From this investigation it is estim_ted that increase of body
volume by as muchas 40 percent by extensions to the length results in
only a small loss in maximumlift-drag ratio.

4. For fixed length, maximumlift-drag ratio decreases almost
linearly with increase in body diameter.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field, Calif., Jan. 27, 1959
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APPENDIX

METHODSFORCOMPUTINGAERODYNAMICCHARACTERISTICSFOR

BODIESANDARROWWINGANDBODYCOMBINATIONS

Bodies With Circular and Elliptic Cross Sections

For slender bodies with circular and elliptic cross sections the
lift_ drag, and pitching-moment coefficients can be computedby the methods
of references 5 and 7- Allen in reference 7 proposes a theory for pre-
dicting the forces and momentsfor slender bodies of revolution inclined
to angles of attack considerably higher than those for which theories
based only on potential flow concepts are knownto apply. In this theory
a crossflow lift attributed to separation is added to the lift predicted
by potential theory. The viscous crossflow is considered to be independ-
ent of the axial flow and to be that of the steady flow past a circular
cylinder. Although this theory is semiempirical in that experimental
crossflow drag coefficients for circular cylinders are used_ it has
provided considerable improvementover potential theory for computing
forces and momentsfor bodies which have cylindrical aftersections of
constant diameter. For bodies of revolution the equations for lift
coefficient and pitching-moment coefficient (based on wing values_
AWand _) are

Ab Ap _2
c% =2  +Cd ci -]

(1)

and

[Q-Ab(Z-Xm)] Ap (Xm___-xe_c_2CmB=2 L c 1
(2)

In equations (i) and (2) the potential components are given by the first

term and the viscous by the second. The section drag coefficient for a

circular cylinder placed normal to an air stream is Cdc. Values of Cdc ,

which vary with M_sin _ and R sin _, can be obtained in reference _.

As shown in reference _, drag coefficients for inclined bodies can be

closely estimated by means of the relation

= + (3)
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In reference 5 it is shown that the lift and pitching-moment

coefficients for a body of elliptic cross section can be correlated

with the corresponding coefficients for a body of revolution having the

same axial distribution of cross-sectional area. Ratios of lift coef-

ficients and ratios of pitching-moment coefficients are given by

(CLS)e (Cms) e
=-- = ff cose_ + _ sine w (4)

b a
cns c%

where _ is the angle of bank about the longitudinal axis, being equal

to 0° with the semimajor axis, a_ horizontal, and 90 ° with the semiminor

axis, b, horizontal. For bodies with elliptic cross sections, the lift

and pitching-moment coefficients can be comp_ted by means of equations (i),

(2), and (4). The drag coefficients can be _omputed by use of equation (3)

with elliptic body coefficients substituted for circular.

The zero-lift drag coefficient (CDo)B in equation (3) is taken as

the sum of the pressure drag and skin-friction drag coefficients. For

minimum-drag bodies, such as the circular body considered in this investi-

gation, pressure-drag coefficients can be determined by use of reference 9.

For turbulent boundary-layer flow_ the skin-friction drag coefficients

can be computed by the T' method of Rubesil and Johnson as presented in

reference i0. For laminar flow the Blasius _quation (ref. ii) is usually

satisfactory. The zero-lift drag coefficients for the elliptic bodies

are assmned to be equal to those computed fo_ equivalent bodies of

revolution. This assumption is closely substantiated by the experimental

results of reference 5-

Arrow Wing and Body Combilations

To compute accurately the lift, drag, a:id pitching-moment coefficients

for an arrow wing and body combination, esti:mates must be made of the

interference between the wing and the body. Because of mathematical

complexity, most interference methods are restricted to configurations

employing bodies of revolution with wings wh:.ch do not have sweptback

trailing edges. For an arrow wing and body ,*ombination it can be seen

that the primary effects of interference can be accounted for by the

assumption of a delta wing, as shown in the _ketch_ in place of the
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arrow wing. This assumption also permits the use of available inter-

ference factors, such as those presented in reference 12. The delta

wing has the same leading-edge sweep as the arrow wing, and the trailing

edge is at the rear intersection of the arrow wing with the body. The

interference terminology used in this report is similar to that found

in reference 12, and hence there is no detailed explanation of theory

in this presentation. Force and moment equations are written for the

circular body with the arrow wing. It is assumed that these expressions

also can be applied to estimate the forces and moments for the elliptic

body with the arrow wing.

The lift coefficient for the arrow wing and body combination is

written as

CL = CLB + CLw + CLi

or

where

and

CL --CLB + (CL)w(B)+ (CL)B(W)

)_ AW'CLi -- [KW(B) -I] + KB(W CLw' A--%-

C ' AW'
(COw(B) = CLw + [KW(B) -l] LW 7V

(6)

(7)

A W '

(CL)B(W) = KB(W)CLw' _ (8)

In these equations CLw' and AW' denote lift coefficient and area for

the delta wing. Values of CLw' , computed by linearized wing theory, can

be obtained by use of reference 13. Body lift coefficients (CLB) can be

computed by the method previously outlined. For the arrow-wing lift

coefficients (CLw) , experimental values probably should be used, since
agreement of theory with experiment for efficient arrow wings has been

found to be poor (ref. 3). Values for the interference factors,

KW(B) and KB(W) , can be obtained from the plots in reference 12 for the
appropriate ratio of semispan to body radius for the delta-wing and body

combination.
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The drag coefficient for the complete .:onfiguration is given by

CD = CDw + CD B + CD i (9)

where

CDi = CLi_

In this equation values of CDB for the body can be computed as previously

outlined, but experimental values of CDw for the arrow wing probably
should be used.

In the computation of center of pressure, lift coefficients can be

substituted for normal-force coefficients_ since they are practically

equal throughout the angle-of-attack range of this investigation. The

following equations are used to compute the center of pressure:

_CL B + _W(B)(CLlw(B) + ::%(WI(%)B(W)
7 = (io)

CL

1411e re

 w(B)= zN + c .,\_'Jw(B)

= zN + c (_-)>(w)%(w)

_> (Yw/C)CLw + (Ti/c)[(CL)w(B) - CLw]

w(s) (CL)w(s)

Yi [(CL)w(B )_CLW ] = %- CL W
c _(B) <Aw/

(ii)

(m)

(13)

+ (CL);4(B)-CLw] - (_)' SAW'_\77w]CLw

from

(-ZW/C)' (Aw '/Aw) CLw' + (Ti/c)[ (CL)w(B)-CL w ]

CLw'(Aw'/Aw)+(CI)w(B)-CLw

(14)

and

Q <T (15)
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In equations (14) and (15) the primes are used to denote quantities for
T

the assumed delta wing. Values for (Z/C)W(B) can be obtained from chart

13 in reference 12. Values for (T/c)_(W) can be obtained from chart 15

in the same reference, and (Tw/c)' is taken equal to 0.667. Computed

body-alone values for _B and experimental wing-alone values for (Tw/C)

can be used.

Pitching-moment coefficients referenced to any axial length position,

Xm, can be obtained by

CL

Cm : (Xm - _) T (16)
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TABLE I.- ORDINATES FOR A/CROW WIC_G

[All dimensions are in inches]

y=o

X_e = 0

xo

0

.350

•700

1.050

i. 400

i. 750

2. i00

2.45O

2.8OO

3.150

3.5o0

3.850

4. 200

y = O.124

Xze = 0.700

zu zL Xo zU zL

0.082 0.082 0 0.080 0.080

.149 .032 .333 .151 .030

.180 .020 .665 .178 .017

.200 .012 .998 .198 .Oll

.212 .008 1.330 .209 .006

.222 .005 1,663 .215 .003

.227 .003 1•995 .218 .002

•229 .002 2. 328 .219 .OO1

•227 .002 2. 660 .217 .001

.221 .001 2.993 .210 .o01

.212 .001 3.325

.201 0

•190 0

4. 550 .175 0

4.900 .157 0

5.250 .135 0

5.600 .I12 0

5.99O .085 0

6.300 .058 0

6.650 .029 0

7. 000 0 0

Leadlng-edge r_dlus

= 0.018 0.017

y :_ 0.247 y = 0,495

Xze :, 1.400 X_e = 2.800

Xo zU z L xo z U zL

I 0 0.070 0.070 0 0.060 0.060

•315 .142 .029 .280 •117 .o/b

•630 .171 .017 .560 .143 .o17

•945 .187 .010 .840 .161 .009

1.260 .199 .005 1.120 .171 .005

1.575 .204 .003 1.400 .179 .O02

1. 890 .208 .001 i. 680 .182 .001

2.205 .208 .001 1,960 .183 0

.202 .001 3.150 .192 0

3.658 .192 .001 3.465 .182 0

3-990 .]81 .001 3.780 .171 0

4.323 .167 0 4.095 .157 0

4.655 .150 0 4.415i .141 0

4.988 .131 .001 4.725 .123 0

5.320 .109 .003 5.040 .lO1 0

5.653 .087 .005 5.355 .078 .001 4.760

5.985 .063 .008 5.670 .046 .003 5.040

6.318 .038 .010 5.985 .037 .011 5.320

6.650 .012 •012 6.300 .025[ .025 5.600

2.520 .205 ,001 2.240 .181 -.001

2.839 .])_ .001 2.520 .176 -.O01

2.800 ,169 -.001

3.080 .161 -.001

3.360 .151 -.002

3.640 .139 -.C_:3

3.920 .123 -.003

4,200 .ii0 '-.003

4.480 .102 •008

•093 .019

•083 .033

.069 .044

.056 .056

Y = 0.989

X_e = 5•600

x° zu ZL i x°

I0 0•050 O.Oy_ 0

0.016 0.014

y = i._84 y= 1.979

Xze = 8.400 Xze =ll.200

zU zL x o zU zL

0.094 0.094 0 0.285 0.285

.210 .082 .0 _3 I .140 .I,94 .080 .070

.420 .099 .009 .2_3 .141 .082

.630 .113 .003 •420 ,157 •087 .210

.840 .121 0 ,5601 .IFl .093

1.050 .127 -.003 .700 .184 .099 .350

•133 -.003 ! .840 .395 .1071.260

1.470 .140 .003 ' .980 .206 .116 .490

1.680 .147 .012 i.i20 .214 .125

1.890 .152 •021 1.260 .223 .135 .630

2.100 .156 .029 1.400 .229 .145

2.310 •158 .038 1.540 .236 .156 .770

2.520 .159 .047 1.680 .242 .167

2.730 .159 .056 1 820 .24_ I .179 •910
2.940 .157 .066 I]960 .254 I .191

3.150 .155 .075 2.100 .258 .205 1.050

3.360 .151 .087 2.240 .261 ._]-8

3.570i .147 ,098 2.380 .264 ,230 1.190

3.780 .143 .ill 2.520 .265 .244

3.990 .139 .124 2.660 .267 .257 1.330

4.200 .137 .137 2.800 •269 .269 1.400
t

Leading-edge radius

= O.Oll 0.007

.292 .286

•333 .299

•351 .311

.366 .314

•379 .335

.388 .349

•395 .362

•399 .375

.402 .387

•405 .399

.406 .406

0,003
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